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CONVERGENCE ANALYSIS OF DOMAIN DECOMPOSITION 
ALGORITHMS WITH FULL OVERLAPPING FOR THE 

ADVECTION-DIFFUSION PROBLEMS 

P. LE TALLEC AND M. D. TIDRIRI 

ABSTRACT. The aim of this paper is to study the convergence properties of a 
time marching algorithm solving advection-diffusion problems on two domains 
using incompatible discretizations. The basic algorithm is first described, and 
theoretical and numerical results that illustrate its convergence properties are 
then presented. 

1. INTRODUCTION 

Domain decomposition methods have become an efficient strategy for solving 
large scale problems on parallel computers [3]-[8]. Nevertheless, they can also be 
used in order to couple different models [1, 9, 10, 12, 13, 16, 18, 19, 20]. In this 
paper we shall examine a domain decomposition strategy which can be applied to 
such situations. 

This approach was introduced in order to resolve several difficulties that occur 
in fluid mechanics and kinetic theory. In particular, our aim is to introduce sev- 
eral subdomains in order to locally introduce an enriched model next to a domain 
boundary for an exterior domain problem. For this purpose, we propose to fully 
overlap subdomains and to couple the solutions through natural "friction" (Neu- 
mann) forces acting on the internal boundary of the domain, these friction forces 
being updated inside the time marching algorithm used for the solution of the initial 
boundary value problem. In the present study, only the case of two subdomains 
will be considered. 

The theoretical study of our method will be done on an advection-diffusion prob- 
lem, which will serve as our model problem in this paper. The analysis will be made 
at the continuous level, independently of any discretization strategy, which means 
that the results will be mesh independent. 

In [21, 22] the authors studied overlapping methods based on an explicit Schwarz 
additive methods for time evolution parabolic problems. These methods solve the 
algebraic systems arising from the discretization of the unsteady parabolic problems 
via implicit schemes, by constructing preconditioners based on a Schwarz additive 
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method. Our approach is quite different in that we define our method by imposing 
friction (Neumann) type boundary conditions on the internal boundary of the global 
domain and Dirichlet boundary conditions on the external boundary of the local 
domain at the continuous level (see Section 2). This permits us to uncouple the 
global problem and the local one. Hence, they can be discretized by two independent 
approximation methods. 

In the next section we shall describe this model problem. In the third section we 
present our algorithm for some basic cases. In the fourth section we show how this 
algorithm can be applied to some problems in mechanics and kinetic theory. The 
fifth section deals with one-dimensional stationary problems. We will show also 
that the convergence of this method can be improved by introducing a relaxation 
parameter [5]. In the sixth section we study the linear convergence of the implicit 
version of the coupling algorithm in the general multidimensional case. In the 
last section we study the numerical stability of the explicit algorithm. Practical 
applications of the proposed algorithm to real life CFD problems can be found in 

[1], [18], [19], and [20]. 

2. THE MODEL PROBLEM 

Consider a bounded domain Q of R n such that its boundary &Q is lipschitzian, 
and a connected domain Qloc of R n with Qloc C Q (Figure 1). The boundaries of 
the two subdomains are defined as follows: 

rFb= aQ n &Q1o0, (internal boundary), 

ri = aQIoc n Q, (interface), 

FOO = 0Q\rb. (farfield boundary). 
We denote by n the external unit normal vector to &Q or oQ1oc 

We will make use of the following notation: 

||V||0,O = IVIIL2(0)) 

1V11s,0 jVjjHs(0), 

|V11,0 = jjVVIIL2(O)1 

where 0 is an open bounded domain of Rn , L2 (0) is the usual space of square 
integrable functions over 0, with norm lI lloo, and Hs(O) is the usual Sobolev 
space of functions with derivatives up to order s square integrable ovei 0, with 
norm 11.11 sO 

Let v be the velocity field inside a given incompressible flow such that 

divv = 0 in Q 
(1) 

v * n = 0 on Fb. 
We consider the following convection-diffusion model problem: 

Find p, a real valued function, defined on Q and satisfying 

div(vp)-vA/ 0 in Q, 

(2) p0 on 17, 

1 -p = 0 on Fb 

Here v is the flow velocity and v is the diffusion coefficient. Problems of this form 
typically occur in fluid mechanics, gas dynamics or wave propagation. 
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FIGURE 1. Description of the computational domain 

Most CFD algorithms will in fact consider the solution of this problem as the 
stationary solution of the evolution problem (3) described below: 

Find q: Q x (0, T) -* IR such that 

r9' + div(v0)-vA\ = in Q x (0, T), 
at 

(3) 
=0? on IF,, x (O, T), 

1 
X =0 on rb X (0,T), 

I $0(0) - qo in Q. 
The general method then consists in integrating (3) with respect to time until 
reaching a stationary solution. 

3. GENERAL ALGORITHM 

3.1. Time Continuous Case. Let us introduce the local subdomain Qlo, (see 
Figure 1) which has an external boundary ]i, and let us consider the trace q5,oc 
of q on the subdomain Qlo, as an independent variable to which we associate an 
arbitrary independent initial value q$00 :? q$o We then replace the evolution 
problem (3) by the following evolution systems: 

Find 0 (resp. 0,)o : Q -*I R (resp. Qlo -*I R) satisfying 

( + + div(v0)-vAo = in Q x (0, T), 
at 

(4) on IF, x (0,T), 

l. v,taq a=sv0/loc on ]b x (0,T), an an 

a[ 0c + div(viloc) - v0\lc = O in Qloc x (0, T), at 
(5) 0loc = O on Fb x (0,T), 

qloc = 0 on ]i x (0,T), 

(6) /(0) = /o in Q, O$loc(O) = ol in 9loc 
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Remark 3.1. The global problem (4) with the initial condition (6) has no no-slip 
boundary condition. This suppresses the boundary layer which appears at low 
viscosity and facilitates the numerical solution of this problem. The boundary 
layers are modeled by the local problems (5)-(6), which are only to be solved on a 
small domain Ql, with a very fine discretization if needed. The two problems are 
only coupled by their boundary conditions. 

3.2. Time Discrete Case. The general algorithm that we propose for the solu- 
tion of our model problem (2) is to integrate the evolution problem (4)-(5)-(6) with 
respect to time until we reach a stationary solution. This integration in time is 
then achieved by the following uncoupled semi-explicit algorithm, where the oper- 
ators are treated implicitly inside each subdomain and where one of the coupling 
boundary conditions is treated explicitly and the other is treated implicitly: 

* set 0q$o = q0, and 0q = 00, 
* then, for n > 0, okTnh and o$Tn being known, solve successively 

oc loc + div(vjn?+l) - vAq$nO+jl = 0 in Qloc, 

(7) q2n+1 =- on o i, 

I. -$>on+1 = 0 on Fb, 

?n+l_ + div(vn+l) - vA/\+ 
l 0 in Q, 

At 

(8) o~~~~~~~~~tn+ 1 = {0'? on IFO, 

a()qn+l aon+l 

Aon A n b 

Remark 3.2. We have a full uncoupling between (7) and (8). They can (and actu- 
ally will) be discretized and solved by two independent solution techniques. 

Remark 3.3. The fully implicit version of this method consists in replacing the 
condition 

oln+1 = on on Fi 

by the condition 
on)o- = $n+1 on Fi. 

The two subproblems are then coupled at each time step. 

Remark 3.4. If in (8) we replace Q by QE defined as 

QE = Q\Qloc, 

and Fb by 1i, and if we set At = oc, then we obtain a nonoverlapping version of our 
strategy, which is a standard Dirichlet-Neumann algorithm [14], [15] and therefore 
requires a relaxation strategy to converge. 

Remark 3.5. The initial condition q$00 is not assumed to be equal to 00 on the local 
subdomain Qloc, because in most cases it is impossible to impose this condition at 
the discrete level since the grid used on Qloc will in general be different from the 
grid used on Q. In addition, even if we assume q$o = ,00 we will not have q$'c = on 
on Qloc unless we use the fully implicit algorithm on compatible grids. 
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In the next section, we describe some applications of the above algorithm to real 
world problems. 

4. APPLICATIONS TO FLUID MECHANICS AND KINETIC THEORY 

4.1. Coupling Navier-Stokes equations. Let us consider the compressible 
Navier-Stokes equations, which we formally write either as 

at + div[F(W)] 0 on Q (conservative form) 

or as 

at + T(U) + D(U) 0 on Q (nonconservative form) 

with W = (p, pv, pE) and U = (p, v, 0) the conservative and nonconservative vari- 
ables, F = Fc + FD the total flux (convective and viscous part), T and D the 
convective and viscous terms in the nonconservative writing of the Navier-Stokes 
equations. The problem consists in computing a steady solution of these equations 
with the boundary conditions 

pv, pE given on F,, (exterior limit of the domain), 

p given on I0,, {x, v(x) .n < O } (inflow), 

v = 0 on the body Fo (no-slip), 

0 = 00 on the body 1O. 
The global numerical treatment of these equations faces the following difficulties: 
(i) In a conservative calculation, the numerical viscosity of the discretization 

scheme interferes with the physical viscosity and for a mesh of reasonable size leads 
to an overprediction of the boundary layer. Moreover, no-slip boundary conditions 
on the body are difficult to handle for many TVD schemes. 

(ii) In a nonconservative calculation, the correct calculation of a shock requires 
locally a very fine grid if we want to satisfy the Rankine Hugoniot conditions. 

In this framework our strategy will couple a global conservative scheme defined on 
the whole domain, which may be approximated using, for example, a finite volume 
space discretization [17], and a local approximation defined in the neighborhood of 
the body, which may be approximated using, for example, a mixed finite element 
approximation of the nonconservative Navier-Stokes equations [2]. 

The coupling problem corresponds to solving the following systems: 
In Q, we solve the conservative Navier-Stokes equations 

aw + div[F(W)] = 0 in Q, at 
0 

F(W) n In (7.(W)f n on the wall, 

T-q(U10c) ni 
W = given imposed value on IF,. 

And in Qloc, we solve the nonconservative Navier-Stokes equations 

U +T(U) +D(U) = 0 in Q, at 
Uloc 0 on Fb, 

Uloc =W on Fj% 



590 P. LE TALLEC AND M. D. TIDRIRI 

Above, ne-a n and r la n, respectively, denote the normal and the tangential force 
exerted by the body on the flow, with n the unit normal vector to the wall oriented 
towards its interior. Notice that in the global conservative problem the matching 
conditions are of the Neumann type as in (4), while for the local nonconservative 
problem these matching boundary conditions are of Dirichlet type as in (5). This 
coupling gives efficient solution to the points (i) and (ii) mentioned at the beginning 
of this subsection. More detail about this type of coupling can be found in [18, 19, 
20]. 

4.2. Coupling Boltzmann equation and Navier-Stokes equations. Another 
important application is the coupling of different models. Such coupling is funda- 
mental for the solution of transitional regimes for which the aerodynamic models 
break down [11]. In this case the coupling corresponds to solving simultaneously 
the Bolztmann equation and Navier-Stokes equations. A brief description is given 
below. 

Let us consider the geometry described in Figure 1. Let f(x, v, t) denotes the 
particle distribution in the Boltzmann region Qj, which is a small region sur- 
rounding the body. Let W = (p, pu, pE) be the value of the conservative variable 
as computed by a Navier-Stokes model in the whole domain Q. In Qj, we solve 
the Boltzmann equation [11] 

af +vaf =Q(f f) at a9x 
with the boundary conditions 

f(V) = pMu,T(V) on Fi if v * n < 0, 

f(v) = kMu, T (v, I) on Fb if v n < 0. 

Everywhere in Q, we solve the Navier-Stokes equations 

at + div[F(W)] = 0, 

with the flux boundary conditions 

W ??W on 17, 

01 
F(W) n 

n 
[ r*[t * n ton Wb) 

'FOBoI ft onnb 
_ qBol * n 

Here, T Bol f n and qBol f n are the total friction fluxes predicted and computed by 
the Boltzmann model. The coupling from Boltzmann to Navier-Stokes is therefore 
achieved by imposing these wall fluxes. Conversely, the Navier-Stokes model acts on 
the Boltzmann solution by imposing the incoming velocity distribution PMU,T(v) 
on the interface Fi, where (p, u, T) are the density, velocity and temperature locally 
predicted by the Navier-Stokes model. 

For larger Knudsen number the Navier-Stokes equations are no longer valid in 
the region next to the body. For such a case, the domain of validity of Navier-Stokes 
equations is QE = Q \ Qlo, and the Boltzmann equation is applied in the domain 
Q10,. The matching boundary conditions are of Neumann type as in (4). More 
detail about the coupling of Navier-Stokes equations with the Boltzmann equation 
can be found in [1, 18, 19]. 
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5. STATIONARY ONE-DIMENSIONAL CASE 

In this section we present a study of the proposed method for the solution of a 
stationary one-dimensional problem. For At = +oo, the above algorithm can be 
written: 

* set d/0 ? o and q0 = $o, 
* then, for n > 0, on$ and o$Tn being known, solve 

div(v/no+l) v-AnO+j1 = 0 in Qloc, 

(9) loc on 1 

I q$,20n+1 = 0 on ]b, 

div(v n+1)_VA\n+1 = O in Q, 

(10) on+ 1 = ' on 17, 

l 06tv~an+l a6)on+c 
Aon Aon 

In one space dimension we take the global domain Q to be the interval ]0, 1[ of R1 
decomposed into two fully overlapping subdomains Q =]0, 1[ and Qloc =]h2, 1[ with 

(11) 0<h2<1. 

We then consider the following one-dimensional problem: 
Find a real valued function p, defined on Q and satisfying 

VW v - V/ = 0 on Q 

(12) p (0) a, 

p(1) b, 

with a constant velocity v. In this one-dimensional case, the above algorithm 
corresponds to 

r V -Wf2 0 on ]h2, 1[, 

( 13) J ((n) (h2 ) = ((n-1l) (h2 ) 

I pR2 (n) b, 

( (n) -(n) =OonJ, [ VW v 14w)' (72)" 0Ion 

(14) j W(n) (1) a, 

p(n)(1 = ) (n). 
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By introducing two relaxation parameters 01 and 02, we can also introduce the 
following variant of the above algorithm: 

r v( 1W - 2 - 0 on ]h2,1[, 

(15) (n) ) b, 

I 9n (h2) 027(n-1)(h2) + (1-02) 
(n-1 (h2) 

V ) -v - 0 on ]0, 1[, 

(16) (n) (0) a, 

I (P) (1) = 0(pp~ ) (1) + (1 - O1)(p(71)'(1). 

We shall now exhibit the conditions under which the algorithm (15)-(16) con- 
verges, and those for which this convergence is optimal. For this purpose, we write 
the interface solution in the form 

(17) (Pi() (1) + yri, 

(18) (n) (h2)= p(h2) + En, 

where p is the solution of the original boundary value problem (12). Using the 
analytical solutions of the problems (15) and (16), we obtain the following induction 
formula: 

(19) (n ) MIN (n-1) ) 

with 

1 -02 02 e(_)(eIh2/- 

C -f tv (h2- 1 (e(,)(h2-) - 1) (1 ) 

This iterative process converges if the spectral radius of the matrix MPN is less 
than 1. A direct but tedious calculation then yields 

Lemma 5.1. The spectral radius of the transfer matrix of the algorithm (15)-(16) 
is 

(21) p(MIN) = max[- D i D2 - 4R], 2 

with 

(22) D = 2 - (01 + 02) + 0102e(-v/l) (e(v/vl)h2 - 1) ev/l,ev(h2/l,)-1' 

(23) R= (1- 01)(1 - 02). 

From this calculation we obtain the following results: 

i): When h2 goes to 1 (nonoverlapping), D goes to +oo, and then P(MIN) goes 
to +oo. There is no convergence at this limit. 
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ii): The optimal convergence is obtained in the case where all the eigenvalues of 
the matrix MIN are zero, i.e. when D = 0 and R= 0. The latter conditions 
imply in particular 

01 = 1 or 02 1. 

If we choose, in addition, 01 = 02, the condition D = 0 implies h2 = 0. In 
this case the subdomain Qlo, is equal to the whole domain, and the associated 
algorithm is no longer of interest. 

iii): The convergence of the method depends symmetrically on both relaxation 
parameters. 

According to ii) it is reasonable to take one of the 0i equal to 1 and call the other 
0. 

By setting 

(24) A = 1- 1) (24) ~~~~~~~~~~e(v/lv)(h2) - 1) 

we then have 

(25) P(MIN) = 11-OAI. 

In this case, setting 

(26) oopt {1 - 
( v 

((vlv)h21) 
e(vv)h2 - 1 1 

which is < 1, we get the following convergence results: 

Theorem 5.1. 1) The convergence is optimal (convergence in 1 iteration) if 

(27) 0 = oopt 

2) The algorithm converges for all 0 in ]0, 2[. 

Corollary 5.1. 1) The case without relaxation (0 = 1) converges if and only if 

2> 
A-> 

i.e., by setting d = - h2 (overlapping length), if and only if 

ii ~~2 
d > -Log (stability condition). v (1 + e,vv/L) (tblt odto) 

2) When v goes to zero, we must have d > 1 
-2' 

Remark 5.1. This theorem states that the application of the algorithm (15)-(16) 
to the time-independent problem (12) converges if and only if the overlap d is 
sufficiently large. In the same situation, we will see that if the problem (12) can 
be regarded as the steady solution of a time-dependent problem and we apply our 
strategy to this evolution problem, the resulting algorithm will converge to the same 
steady solution but with fewer restrictions on d. This motivates the introduction of 
the time marching algorithm of section 3. Moreover, this time marching technique 
is well adapted to nonlinear problems such as those encountered in fluid mechanics 
and kinetic theory (see [1], [18], [19], and [20]). 
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6. IMPLICIT TIME DISCRETIZATION 

6.1. The general algorithm. This section deals with the convergence analysis 
of the proposed algorithm in multiple dimensions when one uses the fully implicit 
version of our strategy (4)-(6): 

* Set q$ , = 0q$ and 0q = 00; 
* then, for n > 0, onk and qon being known, solve 

qn+ -(o$ + div(v$on+l)-vA_1n+l 0 in Q, 

(28) qn+1 0 on , 

l 06/)~~~~~an+l a6)on+l 
aft aftlo on Fb, A9n A9n 

( lo+C1q$/2oc + div(vq$n+1) -,An+ = 0 in Qloc, 

(29) qn+ Fn+1 on Fi 

I QIn+1 = 0 on Fb. 

6.2. Convergence analysis. Before establishing the convergence result we shall 
state the preliminary results that will play central roles in the proof of the conver- 
gence of our algorithm. The first result states the basic L2 and H1 local estimates. 

Lemma 6.1. We have the following estimates: 
1 

+ 2-F_ on-F2 1jn1_o+1 
21l l ll oc OQ1C + v - - -$t)l 1 1IC 

(30 A2t 
(30) < 1 

Il??-n _ -n 1112 

(3 1 ) (7$ )/~loc O - 1 + 2vAtc (7$ lo o41' 

(32) 11on2-1 _ 7?n+112'1c 
<I )n2-110 _7$ - ck?0 1 loc ,oc 1 1+ 2vAtc l Ooc 

n 
1$Fn+ _ n+ 1112 + 2v/At E q$i+1 - 4F1 o1 

i=p 

(33) < Ii - op c 1/1 2,Q1oc Vp < n, 

where c is the Poincare' constant on the subdomain Qloc 

Proof of Lemma 6.1. Subtracting (29) from (28), multiplying the result by qFn+l- 

7n2+ l and integrating by parts over Qloc, we obtain the following classical relation: 

(34) I 1. ( -n+1 -n+1)2 
j 1($ 

-+qoc)( 
$ 

o1- 

oVn7c) (on on)12 

+ 1.1,7(on+l _ n+1)1l2 =o0 
Ql oc 
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By using the Cauchy-Schwarz inequality, we obtain the estimate (30). The second 
estimate (31) follows by using the Poincare inequality with c the Poincare constant 
bounding the squared H1 seminorm of any function v of H1(Qloc) with zero trace 
on 1i by its squared L2 norm. By induction we also obtain the basic L2 estimate 
(32). And finally, we obtain the estimate (33) by summing (30). D 

The above lemma states that the restriction of q$+?l - q$+cl to Ql,, converges to 
0 in both L2 and H1 norms. We now establish other L2 and H1 local estimates. 
Let 6xT be defined by 

__ 
n 

oI _oc+)_ o (35) 6xn Aloc t 
010c) 

and let G be defined by 

nc _ rni 
2'Q " 

n _O 12 (36) G(n)= 2 1 - OlQ0. + l0 - l 1 Qj 

Lemma 6.2. We have the following estimates: 

(37) 116X n 2 < ,\ (G(n) - G(n + 1)), 

(38) G(nr+1) < 1 + K1 . )II0 p p1- -po III2j Vp<n. 21vAt 2v2 loc7 2 p< 

Proof of Lemma 6.2. Subtracting the first two equations in (28) and (29), multi- 
plying the result by 8Xn and ilitegrating over Q1oc, we obtain 

0 / nx2 +j div(vW(q+1 ?l0n+1))6x'?2 

+?v j v( n+1 - n+1)v6Xn 

~vj A Q5 (f?n+ - o+1)6x 

Using the boundary conditions in (28) and (29) and the Cauchy-Schwarz inequality, 
we obtain 

(39) 

lX1 10 V I + Q I 11 2 

- 2 0 1 toe10 2 0 O,loe 'io~ 

2At , IO1 2At IO C 
Now the relation (30) (Lemma 6.1) leads to the first estimate of our lemma. In fact, 
this estimate implies that G is a decreasing function. This property then yields 

(40) 
n+1 

(nr+2-p)G(nr+1) < E G(i) 
i=p 

?72+1 fly 12 nm+1 
< 10lf _ Ofi I2 + ||o| E Illi _ 0i 1I 2 - 1 1 'oc 10 22 1 75 

i=p j=P 

Using again the relations (30) and (31) (Lemma 6.1) yields the second estimate 
(38). And the lemma is proved. DH 
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Next we establish the global L2 and H1 estimates. Let $+F1 be defined as 
follows: 

(41) -n?1 - 
n+1 

- in Q\o 
{qo2l-o in Qloc, 

where s is the solution of the stationary problem (2). By construction, qn+1 satisfies 
the following equations: 

(42) 

; n+1 - on +div(v$n+l)-,A-n+l - 0 in Qjoc U (Q\Qjoc), 

?,n+l = 0 on 

o$fn+? continuous across ri. 

Let A, B1, and B2 be defined as follows: 

A=1 + (vc - 2Cl2) At' 1 

1Cl 
B2 =A/t(- 1l 211? + /)A, 

where c is the Poincare constant and c1 > 0 is an arbitrary constant. We have the 
following lemma. 

Lemma 6.3. We have the following estimates: 

( 1 c)ln+1112Q + 'I n1 112Q 

+ ( | 1 1+ 6Xn 11 2 
(43) <Z\ O, Q + 2c 8XloQ10C 

2 2 lbc 

(44) 
lln+1ll0 Q A2Iq<TI2l Q + Bix1 h 6XnO,Qi + B21,$72?1 - ? ?n+112 

Proof of Lemma 6.3. Multiplying the equation (42) by 0 , integrating by parts 
over Qloc and Q\Q1oc and taking into account the boundary conditions in (42), we 
obtain the following relation: 

J X - q_onn+1 + rV -n+102 

(45) Q /t9 
-/ (4)on+1 -? n+1)) n+1 = ?. 

On Qjoc, on+1 -on+1 satisfies the following equation: 

(46) 

lol -lo?)- - + div[v(on+1 _ -nfl )]-V/ _ (?on+l -nf+1) - 0 
AXtlolo 
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Therefore, multiplying the above equation by q$n+1, integrating by parts and using 
the Cauchy-Schwarz inequality, we obtain 

(vn 
1 - n 

1) f + n 1 + 

2C1 11 IOVQIO C 
clon?>+ 110o Q" + 11 11? o/n+1 

- on+1 i2 
1X 2 0 2 2c 2 +cl I 1 ~~~~~~~~~~~~~~~~~1 

+ 
1 

1 112,Q10' + ~IonC_on1 1,Q10' + 
I 

-n,l12 

with c1 > 0 arbitrary. Combining the above inequality with (45), bounding the 
local norm If lj,Qlo by If Ij,Q and using the Cauchy-Schwarz inequality, we obtain 
the estimate (43). The estimate (44) results immediately from the estimate (43) 
by applying Poincare inequality on Q with c the Poincare constant. The lemma is 
proved. D 

Finally, we are in a position to state the main result of this section. 

Theorem 6.1. The solution of the algorithm (28)-(29) converges linearly in H1 (Q) 
to the solution of the stationary problem (2) for all values of A\t and all choices of 
Qloc 

Proof of Theorem 6.1. Let c1 be chosen such that vcc- 2c 2 > 0. Using relation (44) 
(Lemma 6.3), we obtain by induction 

(47) 
1l ?n+1112 < AP' ln1-p 2nlOpQ 

+ Zi_O A2(B1 II8Xn-i2 llo Q + B2 joln+l-i qfn+l12 i2Q10) 

Since A < 1 by assumption on c1, this implies 

n 

Il?n+1 112Q < pi?n+l-pl1 2 B E 11 6Xil 11 2 fl7 
lll0 APII 

q5 ,Q + B S & )Q10C 

(48) i=n+l-p 

+ B2 l oFl _ i?1 2 

i=n+l1-p 

Now, using (37) (Lemma 6.2) and (33) (Lemma 6.1), we obtain 

(49) 

Ilon 2Q < API? $n+l-P 2, Q + B, ,, (G(n + 1 - p) - G(n + 1)) 

+ B2 Ilon+l-p _ n+?l -p l2 
+'22ZAt' lKoc 

'K Q0C 

The same relation written between 0 and n + 1 - p yields 

?>n+l-lpl2 < A 0li 1?OllQ + B1 t (G(O) - G(n - p + 1)) 

+ B22 l o q3 Q10 21/At 
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By combining this relation with (49), we finally obtain 

$n+l lQ n+I 11 -0 11 2 

+ Bi VG(O) + B2 1 0 11?-)? IQJ A\t 2vZ\t IcIOQo 

? B1 BG(21 ? 1-1p) + A Ikl-P _ n+l-pI2 A\t 21'ZAt locO, 

Choosing p such that n = 2p + q, q > 1 and using (38) (Lemma 6.2), we conclude 
that 

(50) q$?>n+i12 ~Q?An1C2 +APC3 + C4 A + Ack'1 PC 

which, from (32) (Lemma 6.1) implies the linear convergence of ?' 0 Q to 0. 
On the other hand, by combining (37) (Lemma 6.2) and (43) (Lemma 6.3) we 

obtain 

( 1 C2) 11-n+1 11I 2Q + '/ -n? 1 12, 

1 2 _ _ _ Y 

(51) 2z linllo Q + 2cAt (G(n) - G(n + 1)) 

+ (||V||00 + V 
o 

>+1_?n+l1 i2 

Therefore by using (30) we obtain 

( 1 C2) 11-n+1il Q12 + 
'/ 

-n? 
1 
12 

(12 
0- +, 

(52) 2z\t f 11nlq Q + 2Vi (G(m) - G(n + 1)) 

|f|Vf|l|2 V ) _(11?)I C _)_ 1_ O QI_ _ (52) 2At 0, ~2c 2A ?G()( 2Zt o) 

Our result now follows from (38) (Lemma 6.2), (32) (Lemma 6.1), and the linear 
convergence of flq$nllo,Q. 0 

6.3. Convergence of a fixed point method for the implicit scheme. The 
implicit scheme proposed in this section couples the global and the local problem. 
To uncouple them, it is advisable to use the fixed point algorithm. In this subsection 
we just describe the algorithm. For the analysis we refer to [12, 13, 18]. The 
algorithm is as follows: 

* set q$?oc O = Vol and 00 = V), 
* then, for k > 0, $nj+ 1 being known, solve 

(53) 
,0n+1 + _ on~ 
(tloc, k+ l oc + div (Vo>n+l k+ An+ 1 inV ?>lo,k+ 

Ickn+ lA1 = OCkn+ 1 on +i, jlock+1 = k on 

41 l~~~~~~~~oc,k+1 0 o 
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(54) 
qn;1 -$On 

{ +\t div(Vn+l) - /Akn+1 = 0 in Q, 
Xn+1 0= on F00, 

,aokn+l1/ = vaanjn+l +1/amn on Fb* 

We will study now the algorithm (53)-(54). By setting 

(55) Ol)Ioc,k,q 1 -oc,k+1 4loc,q+lv 

(56) =)k,q k q 

we observe that V)loc,k,q and 'V)k,q satisfy the following equations: 

(57) 
'V)loc,k,q/At + diV(VV)1oc,k,q) - 'AV/)1oc,k,q = 0 in Qloc, 

'V-1Ioc,kq = 'V'k-1,q-1 on Fi, 

I '|V)loc,k,q = 0 on Fb, 

'V)k,q/A\t + div(V)k,q) = 0 in Q, 

(58) V)k,q = 0 on F00, 

alv)k,q = &1)Ioc,kq on 
An An 

If A\t is sufficiently small, we prove in [13] that 'V)k,q and 'V)loc,k,q converge lin- 
early to zero. Hence the sequences on+j1 and $n+ k are Cauchy sequences which 

converge linearly to the unique solutions $n+l1 and q$n2+l of the implicit scheme. 
This guarantees the convergence of the above fixed point algorithm. 

7. NUMERICAL ANALYSIS OF THE STABILITY OF THE ALGORITHM (7)-(8) 

In this section we focus on the application of the explicit time marching algorithm 
(7)-(8) studied in the previous sections to the numerical solution of the steady 
boundary value problem (2). We first assume that the boundary condition on Fb 
in (8) is explicit: 

an an 
so that the resulting algorithm is parallel (Jacobi type). 

Here, Q denotes the domain surrounding the obstacle (an ellipse in our numerical 
study), as described in Figure 1. The global and local subdomains are discretized 
by fully overlapping compatible finite element grids. The global mesh contains 1378 
nodes and 2662 elements (see Figure 2). Furthermore, the time marching algorithm 
is initialized by setting 00 equal to zero. 

In a first step, the velocity field is obtained by solving the following inviscid 
incompressible flow problem: 

{ divv = 0, 

curly = 0, 
Woco = (1, O), 
v * = Oon the body Fb, 
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FIGURE 2. Description of the finite element mesh and of the local 
subdomain. 

with a first order finite element method using the same global mesh. 
If we set v = 0, the algorithm may or may not converge depending on the 

values of vAt. More precisely, we observe that the algorithm converges linearly 
when vAt < ao, and diverges otherwise. This is graphically shown in Figures 3-7, 
where the values of 110+1_0n1 are plotted versus the iteration count n for vAt 
equal respectively to 10-6, 10-1, 1, and 10. Further, when the velocity is taken 
sufficiently large, the algorithm becomes unconditionally stable. In particular, the 
initialization of our algorithm by 0 = 0 with 11v,,11 = 1, v = 0.1 and At = 100 
leads to a converging algorithm (Figure 7). 

By intuition such a behavior seems natural. An overestimation of the solution 
oYn at the interface Fi implies an overestimation of the friction forces on Fb. For 
sufficiently small time steps, this overestimation will not affect the value of On+1 
on Fi and can therefore be ignored at the next time step. If the Reynolds number 
is sufficiently large, this error will only affect the wake region but will not have 
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-11 - Error 

-1.1\ 

-1.1I I I I I I I I I I I I I I \ 

1.0 167.3 333.7 500.0 

| Iteration 

FIGURE 3 

any influence at the interface Fi. By contrast, for large At and v, this error does 
affect the value of 0$+1 on Fi. The influence of the error on 0'+1 may be amplified 
throughout the iteration process. 

Another variant of the algorithm consists of replacing the explicit Dirichlet con- 
dition 

->+ = on Fi 

in the algorithm (7)-(8) by the implicit condition 

to+1 = 
n+1 on 1i. 

In fact, this implies replacing the previously parallel algorithm (Jacobi-like) by the 
sequential algorithm (Gauss-Seidel-like). 

When we solve the pure diffusion problem (i.e. flow velocity v = 0) with v = 1 
and At = 1 (respectively At = 2) we obtain a better convergence history: 

* The speed of the new algorithm is linear and clearly faster than the parallel 
algorithm. 

* The domain of convergence is moderately larger (see Table 1). 
To study the convergence behavior of both algorithms experimentally in more 

detail we assume that we have a linear behavior of our algorithm, and hence the 
error at the iteration n will satisfy the following relation: 

11l ?n+ 1 _ ?on 1j r- KnK nll?l _ ?>0 10 

The algorithm converges if K < 1. An estimate for K can be found by consid- 
ering, as in Table 1, the ratio 

1 log 11q$n+1 _ 1j? --log K, --log 
oik 
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FIGURE 5 
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FIGURE 7 
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TABLE 1. Contraction constant (in fact minus its logarithm) ver- 
sus vAt for the explicit (Jacobi) and semi-explicit (Gauss-Seidel) 
version of our coupling algorithm. We observe divergence for V = 0 
and vAt > 2, and convergence otherwise. 

ViAt 1/1000 1/10 1/2 2 5 10 50 1000 
Gauss-Seidel 0.06 0.1 0.22 0.5 -0.27 -0.5 -0.75 -0.8 

Jacobi - 0.1 0.22 0 -0.09 -0.25 -0.4 -0.41 

Gauss-Seidel 0.03 0.25 1.46 2.12 2.8 2.6 2.4 2.4 
V= 10 
Jacobi 0.03 0.28 1.15 1.15 1.15 1.15 1.14 1.14 
V =10 
Jacobi 0.23 2.79 2.8 2.7 2.75 2.8 - - 

V =1000 

which is displayed as a function of (vAt) for n = 14 and different values of V -. 

A negative value of this ratio means divergence of the algorithm. As expected, this 
ratio is positive for sufficiently small values of At and converges to zero as At goes 
to zero. 

In this table, we observe that for V = 0 and vAt < ao 2, the algorithm 
converges. However the convergence is slow since the minimal contraction constant 
Kmin (for the optimal value of vAt) is close to one (see Table 2). For V = 10, 
the algorithm converges for a much larger range of values of v/At and the optimal 
contraction constant is much smaller. This is summarized in Table 2, where we have 
displayed the best possible contraction constants for each of the coupling algorithms 

v 
and for different values of the Reynolds number V 

TABLE 2. Minimal contraction constant versus the Reynolds num- 
ber V for both sequential and parallel versions of the algorithm. 

Jacobi (parallel) I Gauss-Seidel (sequential) 
V Kmin V Kmin 
0 0.85 0 0.68 
10 0.50 10 0.11 
10 0.14 

8. CONCLUSION 

We have analyzed the convergence properties of a time marching algorithm for 
solving a domain decomposed advection-diffusion problem with full overlapping and 
coupling by friction. We were able to prove theoretically the unconditional stability 
and linear convergence of the fully implicit algorithm (?6). 

When using the uncoupled semi-explicit algorithm in the general case, numerical 
evidence indicates that this algorithm is unstable for large values of At and small 
overlapping, and that it becomes linearly convergent when At is below a Reynolds- 
number-dependent threshold (?7). This conditional stability is not a real issue for 
practical CFD problems because most solvers already require the use of small time 
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steps inside each domain. Nevertheless, it would be nicer to derive an uncoupled 
unconditionally stable version of the present time marching algorithm. 
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